viernes, 24 de abril de 2009

9 - Matemáticas y Tecnología


  • VINTON CERF
    Vinton 'Vint' G. Cerf. científico de la computación estadounidense, considerado como uno de los 'padres' de Internet. Nacido en Connecticut (Estados Unidos) en 1943, se graduó en Matemáticas y Ciencias de la Computación en la universidad de Stanford (1965). Durante su estancia posterior en la Universidad de California (UCLA) obtuvo el Máster en Ciencia y el Doctorado.
    A principios de los años 70 comenzó a trabajar con Robert Kahn en el desarrollo de un conjunto de protocolos de comunicaciones para la red militar ARPANET financiado por la agencia gubernamental DARPA. El objetivo era crear una "red de redes" que permitiera interconectar las distintas redes del Departamento de Defensa norteamericano, todas ellas de diferente tipo y funcionando sobre diferentes sistemas operativos, con independencia del tipo de conexión: radioenlaces, satélites y líneas telefónicas.
    Las investigaciones, lideradas por Vinton Cerf, primero desde la Universidad de California (1967-1972) y posteriormente desde la Universidad de Stanford (1972-1976), llevaron al diseño del conjunto de protocolos que hoy son conocidos como TCP/IP (Transmission Control Protocol/Internet Protocol), que fue presentado por Vinton Cerf y Robert Kahn en 1972).
    Entre 1976 y 1982, trabajando en DARPA, fue pionero en el desarrollo de la transmisión por radio y satélite de paquetes, responsable del proyecto Internet y del programa de investigación de seguridad en la red. Siempre preocupado por los problemas de conexión de redes, Cerf estableció en 1979 la Internet Configurarion Control Board


    Entre 1982 y 1986, Cerf diseñó el MCI MAIL, primer servicio comercial de correo electrónico que se conectaría a Internet.
    En 1992 fue uno de los fundadores de la Internet Society y su primer presidente.
    Actualmente Vinton Cerf es el Chief Internet Evangelist de Google, ocupación que compagina con el cargo de presidente del ICANN.


  • TIM BERNERS-LEE
    Nació el 8 de junio de 1955 en Londres, Reino Unido, se licenció en Física en 1976 en el Queen's College de la Universidad de Oxford. Es considerado como el padre de la web.
    Básicamente, Tim, ante la necesidad de distribuir e intercambiar información acerca de sus investigaciones de una manera más efectiva, desarrolló las ideas que forman parte de la web


  • Sus padres eran matemáticos y formaron parte del equipo que construyó el Manchester Mark I (uno de los primeros ordenadores) en la Universidad de Manchester en 1949. Berners-Lee estudió en el Sheen Mount Primary School (que le ha dedicado una nueva sala en su honor) para continuar sus estudios en el Emanuel School en Wandsworth.
    Es un ex alumno de The Queen’s College, Oxford donde él jugaba al tenis de mesa contra sus rivales de Cambridge. Durante el tiempo que estuvo en la universidad, construyó un ordenador con una soldadora de hierro, circuitos TTL, un procesador Motorola 68000 y una televisión vieja. Se graduó en física en 1976.
    Conoció a su primera esposa en su estancia en Oxford y se casó con ella poco después de que ellos empezaran a trabajar en Plessey Telecommunications Limited (Poole) como programadores. En 1978, trabajó en D.G. Nash Limited (también en Poole) donde escribió un sistema operativo.
    En 2001, se convirtió un patrón del East Dorset Heritage Trust para lo que tuvo que irse a vivir a Colehill en Wimborne, Inglaterra.
    En diciembre de 2004 aceptó un puesto en informática en la escuela de electrónica e informática de la Universidad de Southampton, UK, para trabajar en su nuevo y actual proyecto la Web semántica.

jueves, 23 de abril de 2009

10- numeros estraordinarios

  • 10.1EL NUMERO DE ORO


el numero de oro:Un número nada fácil de imaginar que convive con la humanidad porque aparece en la naturaleza y desde la época griega hasta nuestros días en el arte y el diseño. Es el llamado número de oro (representado habitualmente con la letra griega ) o también sección áurea, proporción áurea o razón áurea,

La sección áurea es la división armónica de una segmento en media y extrema razón. Es decir, que el segmento menor es al segmento mayor, como este es a la totalidad. De esta manera se establece una relación de tamaños con la misma proporcionalidad entre el todo dividido en mayor y menor. Esta proporción o forma de seleccionar proporcionalmente una línea se llama proporción áurea.

Tomemos un segmento de longitud uno y hagamos en el la división indicada anteriormente



Aplicando la proporción áurea obtenemos la siguiente ecuación que tendremos que resolver es que da como resultado el número de oro


una de las soluciones de la ecuación de segundo grado es que da como resultado el número de oro.

En matemáticas, la sucesión de Fibonacci es la siguiente sucesión infinita de números naturales:

El primer elemento es 0, el segundo es 1 y cada elemento restante es la suma de los dos anteriores. A cada elemento de esta sucesión se le llama número de Fibonacci. Esta sucesión fue descrita en Europa por
Leonardo de Pisa, matemático italiano del siglo XIII también conocido como Fibonacci. Tiene numerosas aplicaciones en ciencias de la computación, matemáticas y teoría de juegos

El número áureo o de oro (también llamado número dorado, razón áurea, razón dorada, media áurea, proporción áurea y divina proporción) representado por la letra griega φ (fi) (en honor a Leonardo de Pisa Fibonacci), es el número irracional:
Se trata de un número algebraico que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza en elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, etc.
Asimismo, se atribuye un carácter estético especial a los objetos que siguen la razón áurea, así como una importancia mística. A lo largo de la historia, se le ha atribuido importancia en diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido objetables para las matemáticas y la arqueología

El número áureo aparece, en las proporciones que guardan edificios, esculturas, objetos, partes de nuestro cuerpo…Uno de los rectángulos que ha parecido mas bello y armónico es el que cumple que el cociente del lado mayor entre el menor es el número áureo. Un rectángulo de este tipo se llama áureo y un ejemplo del arte es el alzado del Partenón griego.Ya vimos que el cociente entre la diagonal de un pentágono regular y el lado de dicho pentágono es el número áureo. En un pentágono regular está basada la construcción de la Tumba Rupestre de Mira en Asia Menor.El carné de identidad es un rectángulo áureo, y por tanto las cajetillas de tabaco, y en gran parte de las tarjetas que utilizamos así como todas las tarjetas de crédito.Estirando manos y pies y haciendo centro en el ombligo, se dibuja la circunferencia. El cuadrado tiene por lado la altura del cuerpo que coincide en un cuerpo armonioso, con la longitud entre los extremos de los dedos de ambas manos cuando los brazos están extendidos y formando un ángulo de 90º con el tronco. Resulta que el cociente entre la altura del hombre (lado del cuadrado) y la distancia del ombligo a la punta de la mano (radio de la circunferencia) es el número áureo. Hay un precedente a la cultura griega donde también apareció el número de oro. En la gran pirámide de KEOPS, el cociente entre la altura de uno de los tres triángulos que forman la pirámide y el lado es f/2.Aparece el número de oro también en el crecimiento de las plantas, las piñas, la distribución de hojas en un tallo y la formación de caracolas.Esto lo vuelve a relacionar con la belleza en cuanto a armonía, repetición y equilibrio, pues en muchas de las cosas que en la naturaleza están dispuestas en espiral, como las semillas de un girasol o las escamas de una piña, se da una propiedad que no deja de ser sorprendente. Si las observamos, presentan espirales en dos sentidos, el de las agujas del reloj y el contrario. Se cumple que, si contamos el número de espirales que hay en un sentido y las que hay en el, ambos números serán dos términos consecutivos de la sucesión de FIBONNACI. Aquí vuelve a parecer nuestro número mágico.Recientemente, estudios científicos avanzados han demostrado que lo que intuían estos hombres era cierto. En el campo de la odontología, se ha descubierto que la dentadura va creciendo siguiendo proporciones áureas, y de la misma forma lo hacen otros rasgos faciales, como la sonrisa respecto al arco dental, la distancia entre los ojos y muchas más. Tal vez por eso los puntos básicos de acupuntura se distribuyen en la cara en diferentes rectángulos de oro. Ahora todo parece encajar: si nosotros mismos crecemos al ritmo marcado por PHI, ¿no es lógico que encontremos más bellas las formas basadas en la proporción de oro que las que no lo están?El número áureo también aparece en la sucesión de FIBONNACI: 1,1,2,3,5,8,13,21,34… :Cada número a partir del tercero, se obtiene sumando los dos que le preceden. Por ejemplo, 21 = 13 + 8; el siguiente a 34 será 34 + 21 = 55.Esta sucesión es la llamada "sucesión de FIBONNACI" (Leonardo de Pisa 1170-1240).Los cocientes (razones) entre dos números de la sucesión, se aproximan más y más al número áureo (1'61803...).Esta sucesión de números aparece en la Naturaleza en formas curiosas. Las escamas de una piña aparecen en espiral alrededor del vértice. Si contamos el número de espirales de una piña, encontraremos que siempre es igual a uno de los números de la sucesión de FIBONNACI.Esta sucesión también aparece en el estudio de las leyes mendelianas de la herencia, en la divergencia foliar, en la formación de la concha de algunos moluscos...Una manera práctica de dibujar una espiral es mediante la construcción rectangular en las espirales de cuadrados; se trata de dibujar el cuadrante de un círculo en cada nuevo cuadrado que se añada.En la construcción anterior, se empieza con un cuadrado de 1 unidad de lado (el nº 1), se añade uno igual para formar un rectángulo de 2 x 1, a continuación añadimos un cuadrado de 2 x 2 (el nº 3) para formar un rectángulo de 3 x 2; después un cuadrado de 3 x 3 (el nº 4), de manera que el siguiente rectángulo es 5x 3, el siguiente cuadrado es 5 x 5 (el nº 5), y así sucesivamente.
El Número π (pi)
π (pi) es la relación entre la longitud de una circunferencia y su diámetro, en Geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería. El valor numérico de π, truncado a sus primeras cifras, es el siguiente:El valor de π se ha obtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física, junto con el número e. Por ello, tal vez sea la constante que más pasiones desata entre los matemáticos profesionales y aficionados. La relación entre la circunferencia y su diámetro no es constante en geometrías no euclídeas
El Número e
La constante matemática e es el único número real que siendo usado como base de una función exponencial hace que la derivada de ésta en cualquier punto coincida con el valor de dicha función en ese punto. Así, la derivada de la función f(x) = ex es esa misma función. La función ex es también llamada función exponencial, y su función inversa es el logaritmo natural, también llamado logaritmo en base e o logaritmo neperiano.El número e es uno de los números más importantes en la matemática,[1] junto con el número π, la unidad imaginaria i y el 0 y el 1, por ser los elementos neutros de la adición y la multiplicación, respectivamente. Curiosamente, la identidad de Euler los relaciona (eiπ+1=0) de manera asombrosa. Además, en virtud de la fórmula de Euler, es posible expresar cualquier número complejo en notación exponencial.A diferencia de lo que se cree, el número e no se llama número de Euler. Su nombre correcto es la constante de Neper, en honor al matemático escocés John Napier, quien introdujo el concepto de logaritmo al cálculo matemático. La constante e no debe ser confundida con γ, la constante de Euler-Mascheroni, a la que a veces se hace referencia como constante de Euler.El número e, base de los logaritmos naturales o neperianos, es sin duda el número más importante del campo del cálculo, debido principalmente a que la función ex coincide con su derivada, y por lo tanto, esta función exponencial suele aparecer en el resultado de ecuaciones diferenciales sencillas. Como consecuencia de esto, describe el comportamiento de acontecimientos físicos regidos por ecuaciones diferenciales sencillas, como pueden ser la velocidad de vaciado de un depósito de agua, el giro de una veleta frente a una ráfaga de viento, el movimiento del sistema de amortiguación de un automóvil o el cimbreo de un edificio metálico en caso de terremoto. Si nos fijamos con atención, en todos estos ejemplos podemos encontrar el número e. De la misma manera, aparece en muchos otros campos de la ciencia y la técnica, describiendo fenómenos eléctricos y electrónicos (descarga de un condensador, la amplificación de corrientes en transistores BJT, etc.), biológicos (crecimiento de células, etc.) , químicos (concentración de iones, periodos de semidesintegración, etc.), y muchos más.El número e, al igual que el número π, es un número trascendente, es decir, que no puede ser obtenido directamente mediante la resolución de una ecuación algebraica. Por lo tanto, es un irracional y su valor exacto no puede ser expresado como un número finito de cifras decimales o con decimales periódicos.Su valor aproximado (truncado) es

  • El numero (pi)





El número designado con la letra griega = 3,14159....(Pi) que relaciona la longitud de la circunferencia con su diámetro ( Longitud = 2..radio= .diámetro).

El número se define como la razón entre la longitud de una circunferencia y su diámetro. Se puede calcular una aproximación de forma experimental. Puedes coger un recipiente redondo (por ejemplo, un bote de conservas) y medirlo. Yo he obtenido para la longitud de la circunferencia 26'7 cm, y para el diámetro 8'5 cm. He realizado la división y el cociente es 3'141176... (téngase en cuenta el error experimental). Los objetos redondos (ruedas, recipientes,...) han sido utilizados por el hombre desde hace miles de años. En algún momento debieron darse cuenta de que ese 3'14... que aparece siempre que manejamos circunferencias, círculos y esferas es un número que podemos utilizar para calcular longitudes, áreas y volúmenes.

  • EL NUMERO (E)







El número e = 2´71828......, inicial del apellido de su descubridor Leonhard Euler (matemático suizo del siglo XVIII) que aparece como límite de la sucesión de término general
e=2,718281828459045...

El número
e llega por primera vez a las matemáticas de forma muy discreta. Sucedió en 1618 cuando, en un apéndice al trabajo de Napier sobre logaritmos, apareció una tabla dando el logaritmo natural de varios números. Sin embargo, no se reconoció que estos fueran logaritmos en base e, ya que la base sobre la que se calculan los logaritmos no surgió en la manera en la que se pensaba en los logaritmos en aquel entonces.